99 research outputs found

    Susceptibility to Superhelically Driven DNA Duplex Destabilization: A Highly Conserved Property of Yeast Replication Origins

    Get PDF
    Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD) in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements), which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 × 10(−10). This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes

    Superhelical Destabilization in Regulatory Regions of Stress Response Genes

    Get PDF
    Stress-induced DNA duplex destabilization (SIDD) analysis exploits the known structural and energetic properties of DNA to predict sites that are susceptible to strand separation under negative superhelical stress. When this approach was used to calculate the SIDD profile of the entire Escherichia coli K12 genome, it was found that strongly destabilized sites occur preferentially in intergenic regions that are either known or inferred to contain promoters, but rarely occur in coding regions. Here, we investigate whether the genes grouped in different functional categories have characteristic SIDD properties in their upstream flanks. We report that strong SIDD sites in the E. coli K12 genome are statistically significantly overrepresented in the upstream regions of genes encoding transcriptional regulators. In particular, the upstream regions of genes that directly respond to physiological and environmental stimuli are more destabilized than are those regions of genes that are not involved in these responses. Moreover, if a pathway is controlled by a transcriptional regulator whose gene has a destabilized 5′ flank, then the genes (operons) in that pathway also usually contain strongly destabilized SIDD sites in their 5′ flanks. We observe this statistically significant association of SIDD sites with upstream regions of genes functioning in transcription in 38 of 43 genomes of free-living bacteria, but in only four of 18 genomes of endosymbionts or obligate parasitic bacteria. These results suggest that strong SIDD sites 5′ to participating genes may be involved in transcriptional responses to environmental changes, which are known to transiently alter superhelicity. We propose that these SIDD sites are active and necessary participants in superhelically mediated regulatory mechanisms governing changes in the global pattern of gene expression in prokaryotes in response to physiological or environmental changes

    SIDDBASE: a database containing the stress-induced DNA duplex destabilization (SIDD) profiles of complete microbial genomes

    Get PDF
    Prokaryotic genomic DNA is generally negatively supercoiled in vivo. Many regulatory processes, including the initiation of transcription, are known to depend on the superhelical state of the DNA substrate. The stresses induced within DNA by negative superhelicity can destabilize the DNA duplex at specific sites. Various experiments have either shown or suggested that stress-induced DNA duplex destabilization (SIDD) is involved in specific regulatory mechanisms governing a variety of biological processes. We have developed methods to evaluate the SIDD properties of DNA sequences, including complete chromosomes. This analysis predicts the locations where the duplex becomes destabilized under superhelical stress. Previous studies have shown that the SIDD-susceptible sites predicted in this way occur at rates much higher than expected at random in transcriptional regulatory regions, and much lower than expected in coding regions. Analysis of the SIDD profiles of 42 bacterial genomes chosen for their diversity confirms this pattern. Predictions of SIDD sites have been used to identify potential genomic regulatory regions, and suggest both possible regulatory mechanisms involving stress-induced destabilization and experimental tests of these mechanisms. Here we describe the SIDDBASE database which enables users to retrieve and visualize the results of SIDD analyses of completely sequenced prokaryotic and archaeal genomes, together with their annotations. SIDDBASE is available at

    GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes

    Get PDF
    We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/

    Superhelical Duplex Destabilization and the Recombination Position Effect

    Get PDF
    The susceptibility to recombination of a plasmid inserted into a chromosome varies with its genomic position. This recombination position effect is known to correlate with the average G+C content of the flanking sequences. Here we propose that this effect could be mediated by changes in the susceptibility to superhelical duplex destabilization that would occur. We use standard nonparametric statistical tests, regression analysis and principal component analysis to identify statistically significant differences in the destabilization profiles calculated for the plasmid in different contexts, and correlate the results with their measured recombination rates. We show that the flanking sequences significantly affect the free energy of denaturation at specific sites interior to the plasmid. These changes correlate well with experimentally measured variations of the recombination rates within the plasmid. This correlation of recombination rate with superhelical destabilization properties of the inserted plasmid DNA is stronger than that with average G+C content of the flanking sequences. This model suggests a possible mechanism by which flanking sequence base composition, which is not itself a context-dependent attribute, can affect recombination rates at positions within the plasmid

    Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA

    Get PDF
    We present a method to calculate the propensities of regions within a DNA molecule to transition from B-form to Z-form under negative superhelical stresses. We use statistical mechanics to analyze the competition that occurs among all susceptible Z-forming regions at thermodynamic equilibrium in a superhelically stressed DNA of specified sequence. This method, which we call SIBZ, is similar to the SIDD algorithm that was previously developed to analyze superhelical duplex destabilization. A state of the system is determined by assigning to each base pair either the B- or the Z-conformation, accounting for the dinucleotide repeat unit of Z-DNA. The free energy of a state is comprised of the nucleation energy, the sequence-dependent B-Z transition energy, and the energy associated with the residual superhelicity remaining after the change of twist due to transition. Using this information, SIBZ calculates the equilibrium B-Z transition probability of each base pair in the sequence. This can be done at any physiologically reasonable level of negative superhelicity. We use SIBZ to analyze a variety of representative genomic DNA sequences. We show that the dominant Z-DNA forming regions in a sequence can compete in highly complex ways as the superhelicity level changes. Despite having no tunable parameters, the predictions of SIBZ agree precisely with experimental results, both for the onset of transition in plasmids containing introduced Z-forming sequences and for the locations of Z-forming regions in genomic sequences. We calculate the transition profiles of 5 kb regions taken from each of 12,841 mouse genes and centered on the transcription start site (TSS). We find a substantial increase in the frequency of Z-forming regions immediately upstream from the TSS. The approach developed here has the potential to illuminate the occurrence of Z-form regions in vivo, and the possible roles this transition may play in biological processes

    OriDB: a DNA replication origin database

    Get PDF
    Replication of eukaryotic chromosomes initiates at multiple sites called replication origins. Replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where several complementary studies have mapped their locations genome-wide. We have collated these datasets, taking account of the resolution of each study, to generate a single list of distinct origin sites. OriDB provides a web-based catalogue of these confirmed and predicted S.cerevisiae DNA replication origin sites. Each proposed or confirmed origin site appears as a record in OriDB, with each record comprising seven pages. These pages provide, in text and graphical formats, the following information: genomic location and chromosome context of the origin site; time of origin replication; DNA sequence of proposed or experimentally confirmed origin elements; free energy required to open the DNA duplex (stress-induced DNA duplex destabilization or SIDD); and phylogenetic conservation of sequence elements. In addition, OriDB encourages community submission of additional information for each origin site through a User Notes facility. Origin sites are linked to several external resources, including the Saccharomyces Genome Database (SGD) and relevant publications at PubMed. Finally, a Chromosome Viewer utility allows users to interactively generate graphical representations of DNA replication data genome-wide. OriDB is available at www.oridb.org

    The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli

    Get PDF
    Although the right-handed double helical B-form DNA is most common under physiological conditions, DNA is dynamic and can adopt a number of alternative structures, such as the four-stranded G-quadruplex, left-handed Z-DNA, cruciform and others. Active transcription necessitates strand separation and can induce such non-canonical forms at susceptible genomic sequences. Therefore, it has been speculated that these non-B DNA motifs can play regulatory roles in gene transcription. Such conjecture has been supported in higher eukaryotes by direct studies of several individual genes, as well as a number of large-scale analyses. However, the role of non-B DNA structures in many lower organisms, in particular proteobacteria, remains poorly understood and incompletely documented. In this study, we performed the first comprehensive study of the occurrence of B DNA–non-B DNA transition-susceptible sites (non-B DNA motifs) within the context of the operon structure of the Escherichia coli genome. We compared the distributions of non-B DNA motifs in the regulatory regions of operons with those from internal regions. We found an enrichment of some non-B DNA motifs in regulatory regions, and we show that this enrichment cannot be simply explained by base composition bias in these regions. We also showed that the distribution of several non-B DNA motifs within intergenic regions separating divergently oriented operons differs from the distribution found between convergent ones. In particular, we found a strong enrichment of cruciforms in the termination region of operons; this enrichment was observed for operons with Rho-dependent, as well as Rho-independent terminators. Finally, a preference for some non-B DNA motifs was observed near transcription factor-binding sites. Overall, the conspicuous enrichment of transition-susceptible sites in these specific regulatory regions suggests that non-B DNA structures may have roles in the transcriptional regulation of specific operons within the E. coli genome

    Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA

    Get PDF
    We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure
    corecore